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A 5D Monte Carlo particle simulation method for advancing rotating plasmas
in tori is presented. The method exploits the neoclassical radial current balance
(quasineutrality condition). Including the ion polarization current gives the time rate
of change of the radial electric field and related evolution of the rotation velocity
components. A special orbit initialization for a quiescent start and an efficient radial
flux solving algorithm with reduced numerical noise are developed. Numerical sta-
bility of the method with respect to the strength of the perpendicular viscosity and
Mach number of the poloidal rotation is investigated. This new approach enables
one to separate the nonambipolar transport characteristics from the ambipolar ones.
Because nonambipolar transport can support sheared flows, this model can provide a
very efficient tool for studying transport barriers and related neoclassical mechanisms
in toroidal plasmas. c© 2001 Academic Press
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I. INTRODUCTION

While neoclassical toroidal plasmas have been extensively studied theoretically, only a
few global numerical simulations of such plasmas exist. However, in high-performance
tokamak discharges the plasma conditions can seriously challenge the analytical expres-
sions for the neoclassical transport. Various effects including toroidicity, details of the
collision operator, convection and inertia, rotation, finite ion orbits, steep plasma gradi-
ents, and boundary conditions push neoclassical theory to its limits. On the other hand,
simulations in which transport is assumed highly anomalous and is modeled by trans-
port coefficients calculated from various turbulence models are becoming inadequate now
that the transport in various improved confinement regimes can approach the neoclassical
level. Therefore, there is a growing need for a reliable numerical simulation of neoclassical
plasmas.
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Local test particle simulations with Monte Carlo collision operators have been applied
to evaluate the transport coefficients [1] in both tokamaks and helical devices. Here, some
main elements of the neoclassical transport, such as particle or heat diffusion either by
toroidal ripple or by collisions between unlike particles (including alpha particle, impurity,
and other minority ion transport), have been identified to be generally in good agree-
ment with the neoclassical theory in appropriate limits. However, neither the neoclassical
ambipolar electric field nor the momentum or energy conserving collisions fundamen-
tal for a proper evolution of the neoclassical plasma has been simulated in any of these
works. The latter collisions require parallel processing of a large amount of particles,
which has become practical only very recently. Recent advances in computer efficiency
have made global particle simulations feasible in small- and medium-size toroidal plasma
configurations [2].

The development of gyrokinetic particle models [3], based on drift orbits of electrons and
ions in tokamak geometry and including finite Larmor radius effects and magnetic mirroring
forces, has allowed the investigation of self-consistent particle orbits and electrostatic poten-
tial fluctuations, together with basic neoclassical properties [4] of such plasmas. However,
because of the dominance of turbulence in determining plasma transport characteristics,
many of the neoclassical mechanisms either cannot be discriminated or are sacrificed by
various assumptions for greater computing speed.

Lin et al. [8] carried out steady-state, multispecies simulation of neoclassical transport
using a linearized, time-varying weightingδ f-scheme [5] with Monte Carlo collision opera-
tors corrected for conservation of momentum and energy. However, as the total distribution
f was not resolved, the ambipolar radial electric field and rotation dynamics were not found.
Methods that use the totalf-technique [6–8] can, in principle, model the true charge separa-
tion of ions and electrons and solve the ambipolar electric field. However, these conventional
gyrokinetic algorithms have so far been applied only to studies of low-frequency microin-
stabilities and related turbulent transport in tori. This has been accomplished by using (to
improve the computing speed) the assumption of adiabatic electron distribution or by ne-
glecting collisions, thus eliminating the neoclassical ambipolar field and rotation. Whenever
the electron distribution has been assumed fixed or electrons have been followed according
to drift-kinetic approximation, ambipolar modes have been found from the solutions of
the gyrokinetic Poisson relation [9]. However, no results for the global neoclassical plasma
dynamics and equilibrium have been presented. Three-dimensional gyrokinetic simulations
clarifying the interaction of the neoclassical ambipolar field and turbulence-generated field
are in preparation [10] and should illustrate the time evolution of the field.

In the present work, an alternative approach to a consistent simulation of neoclassical
plasmas is presented. In this approach the radial electric field is solved from the radial
current balance (quasineutrality condition). This corresponds to resolving the gyrokinetic
Poisson relation essentially in the limit ofk = 0; i.e., all electrostatic modes with finite wave
vectork are neglected. This enables us to obtain the true neoclassical balance, because the
ambipolar microinstability generated diffusion not affecting the radial current balance is
filtered out. The dynamics of the radial electric fieldEr can be obtained directly from the ion
polarization drift, which is proportional to∂Er /∂t . Recently, this technique was successfully
applied when the relaxation ofEr to equilibrium with an appearence of geodesic acoustic
modes was investigated [11].

A global analysis that includes finite gradients in the background parameters is not pos-
sible by analytical means but requires particle simulation. The present scheme for solving
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Er provides a general way of finding the neoclassical equilibrium for arbitrary plasma cross
section, tokamak aspect ratio, and background gradients, and it avoids all the numerical
complications (by sacrificing the turbulence physics) arising from solving the Poisson rela-
tion correct to allk. It is shown that such important problems as orbit loss (and biased probe)
or poloidal rotation generated by background gradients at an L–H transition [12] together
with the related radial electric field dynamics can be self-consistently and directly solved
with the present numerical method. The scheme is essentially a totalf -method, and it is im-
plemented with an option for a binary collision operator [13] that conserves momentum and
energy pairwise in collisions suitable for totalf -methods only. These conservation proper-
ties are fundamental in proper treatment of the rotation dynamics and neoclassical transport
in general. Theδ f -method provides low noise only for problems in which deviations from
Maxwellian distribution are small. However, in the present problem, the deviations can be
large as a result of steep gradients and the presence of an ion orbit loss mechanism. Thus, the
low noiseδ f -technique is not suitable for this problem since disturbances from Maxwellian
are most probably large.

The paper is organized as follows: The neoclassical radial current balance and the method
for solving the radial electric field are introduced in Section II. This is followed by a
description of the numerical implementation of the method in Section III. The initialization
schemes and the algorithms for resolving the fluxes and advancing the electric field, as
well as the stability issues of the method, are discussed. Section IV presents both global
and annular simulation results for Physical Tokamak-2 FT-2 [14] and Axially Symmetric
Divertor Experiment ASDEX Upgrade [15] tokamaks showing both spatial and temporal
numerical convergence for the calculated radial electric field at transport barrier transition
conditions. The conclusions are given in Section V.

II. RADIAL CURRENT BALANCE

In neoclassical plasmas, a radial electric field arises because of different diffusion rates of
ions and electrons. This electric field ensures quasineutrality and makes the radial fluxes of
electrons and ions equal [16] (also a consequence of automatic ambipolarity in the case of ax-
isymmetry and momentum conservation in collisions). This flux corresponds to the flux aris-
ing from ion–electron collisions. In the present particle simulation method, the radial electric
field Er = 〈Er (ρ, θ)〉 = −(d8(ρ)/dρ)〈|∇ρ|〉 on a magnetic surface with the coordinateρ
is evaluated from the condition〈 jr 〉 = 0 for the radial current densityjr . A general geometry
of the simulations is depicted in Fig. 1. The condition〈 jr 〉 = 0 has to hold for all values of
ρ and timet . Here,〈· · ·〉 denotes the flux surface average, andθ is the poloidal angle.

In the following, radial flux arising from ion–electron collisions is not considered because
it causes only ambipolar diffusion, which does not affect the radial current balance. As
helical systems are not considered, the electron current remains small and is neglected. The
radial current density is therefore

jr (ρ, θ) = jNC+ jvisc+ jpol, (1)

where the terms on the right-hand side correspond, respectively, to neoclassical radial
ion current (arising from standard guiding-center drifts, excluding the polarization drift),
gyroviscosity current, and polarization current. The polarization drift is a real guiding-center
drift. Here, jpol is written separately fromjNC because it depends on∂Er /∂t , which is to
be solved. In the simulation, the currentjvisc, which is not a genuine guiding-center drift,
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FIG. 1. Poloidal cross section of the (axisymmetric) toroidal simulation geometry. Contributions from orbit
loss and return current for the radial current balance are shown.

and jpol can be generated by assigning, locally, each ion the following radial drift velocities
(keepingθ and toroidal angle intact during the corresponding drift step) [17]:

vvisc = −(η/ÄB)[∂2Er (ρ, θ)/∂ρ
2]|∇ρ|2, (2)

vpol = (1/ÄB)∂Er (ρ, θ)/∂t. (3)

Here,Ä = eB/m is the cyclotron frequency of an ion with chargee and massm, andB
is the magnetic field calculated locally at(ρ, θ). The perpendicular (gyro)viscosity coeffi-
cient is given by [18]η = ηBr ≡ (3/10)kBTνi i /mÄ2, and the ion–ion collision frequency
is νi i = e4 ln3n/(4πε2

0m2v3
T ), where ln3 is the Coulomb logarithm,ε0 is the vacuum

permittivity, andn andT are the density and the temperature of the ions, respectively.
It should be noted thatvvisc, unlike the other drifts considered, does not arise from the drift

of individual ions, but is estimated as averages of the bulk plasma behavior. Its true form
would require resolving the gyromotion (and possibly turbulence), which would make the
simulation too CPU-expensive. Thus, we rather treat it in an order-of-magnitude sense using
Eq. (2). The bulk ion rotation speedv⊥ binormal to the magnetic field (perpendicular to
the magnetic field and tangential to the magnetic surface) is approximated by theE× B
flow velocity in this direction. This is well justified because the viscosity drift becomes
important only for binormal rotation speeds much larger than the diamagnetic flow speed.
This should capture the first-order effects of the gyroviscosity.
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For an ion ensemble, the polarization current can be written as〈 jpol〉 = α(ρ)∂〈Er (ρ,

θ)〉/∂t , where

α(ρ) = e
∑

i

|∇ρ|(ρi , θi )

Ä(ρi , θi )B(ρi , θi )

pi

〈|∇ρ|〉
1

dV(ρ)
, (4)

and
∑

i denotes the sum over all ions in the ensemble with positionsρi , θi within the flux
surface volume elementdV atρ. pi is the weight factor equal to the total number of ions
in a real configuration represented by thei th test particle. Thus,Er can be solved from the
equation

∂Er /∂t = −(1/α)〈 jNC+ jvisc〉 (5)

on flux surfaceρ at time t . This equation is valid for all collisionality regimes. Adding
the viscous drift velocity to the guiding-center motion is not essential for deriving Eq. (5).
It is rather a small correction which may have some effect in regions where the electric
field changes extremely rapidly, e.g., as a result of the applied boundary condition. This
perpendicular Braginskii viscosity [18] is not present in the gyro-center equations since it
is not a real guiding-center drift, but is a fluid term related to the gyration of an ensemble
of particles. Since it affects the current, it is included in the motion of particles. It should
be noted that the neoclassical enhancements, related to the inertia in poloidal rotation [19],
are hidden in their complete form injNC, and do not appear explicitly in the currents〈 jvisc〉
and〈 jpol〉.

The total currentj , in steady-state (jpol = 0), consists ofjNC and jvisc. jNC itself consists
of many different components; two of them are shown in Fig. 1 for an interesting case
of radial current balance near a separatrix of a tokamak. Sincejvisc is small in general, a
so-called return currentjret driven by an inward radial electric field and the orbit loss current
jOL are the main components of current balance at the edge. These current components,
however, are carried out by the same test particles and cannot be separated in the code. In
the simulation, the particle guiding-centers in an ensemble are followed in a drift-kinetic
formalism in the presence of a full collision model operator. Some of the particles hit
the divertor or material wall and, thus, phenomenologically, it is possible to talk about
loss current. This current component is balanced by the return current to which these loss
particles may have earlier contributed or may contribute again after their reinitialization.
The power of the present simulation method is that there is no need to make any separation
between the return and torque driving currents.

The present method is incomplete in the sense that the poloidal electric field cannot
be solved simultaneously in a consistent way. Although the latter can in many cases be
neglected to a good accuracy, and it seldom plays a dominant role in neoclassical physics,
if so desired, the poloidal variation of the electrostatic potential8(θ) on a magnetic surface
may be included to a satisfactory accuracy by taking adiabatic perturbation of distribution of
electronsδne = (n0e/kBTe)(8− 〈8〉) and using quasineutrality condition on the surface.
In the following, the inclusion of the poloidal electric field is not investigated. There are no
problems in extending the present method to helical systems where electrons in addition to
ions may play an important role in the current balance.
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III. PARTICLE SIMULATION MODEL

The core of the present method for solvingEr is the evaluation of the ion radial current, i.e.,
the right-hand side of Eq. (5). This can be accomplished by accumulating the net radial ion
motion in test particle simulations. We have implemented our method into the Monte Carlo
particle-following code ASCOT [20]. In ASCOT, each particle is followed along its guiding-
center orbit determined by theE× B, gradient and curvature drifts, collisions, polarization,
and gyroviscosity drifts. The particle following takes place in a realistic geometry, e.g., in the
one shown in Fig. 1, including the region outside the separatrix. Magnetic background data
are imported in the code only in two dimensions (neglecting toroidal dependence), but the
toroidal ripple can be included in the analysis by assuming a sinusoidal perturbationδB =
Bδ sin(Nφ) to the magnitude of the magnetic field (see, e.g., Ref. [23]). Thus, calculations
are not necessarily based on an axisymmetric tokamak model. In the ASCOT code, the
guiding-center equations are written in straight magnetic field line coordinates [23] using
canonical Hamiltonian variables to avoid numerical drifts. The magnetic background is
assumed stationary. In simulations of evolution ofEr on a time scale that is fast compared
to the evolution of the background by particle transport, electrons can be assumed to provide
a stationary neutralizing background and are not simulated. Because the calculation ofEr

is based on the balance of radial currents, no ambipolar processes are included. Therefore,
as already mentioned in Section II, also the ion–electron collisions are neglected. Figure 2
shows the flow chart of the ASCOT code.

For fixedEr , the adopted numerical model has been recently tested in Refs. [21, 22] by
calculating poloidal rotation relaxation rates for a homogeneous plasma and by comparing
the perpendicular conductivity and parallel viscosity evaluated by ASCOT with the ana-
lytical expressions in Refs. [25, 28]. The simulations were carried out for a wide range of
collisionalities and rotation velocities. Qualitative and, also, rough quantitative agreement
was found, but some differences were identified to arise from simplifications made in the
analytical theory.

In solving the radial electric fields from neoclassical current balance, three essential parts
of the code are (a) orbit integration, (b) collision model, and (c) subroutine which solvesEr

from the flux of particles (evaluated from guiding-center orbits in the presence of collisions
and other interactions). For these three main parts there exist two independent methods in
the code which are benchmarked to each other. In orbit integration, guiding-center equations
in straight field line coordinates are used, which leads to complicated but efficient system
of equations. These orbits have been benchmarked to the guiding-center orbit solved in
Cartesian coordinate system, in which equations are simpler but because of the inaccuracy
of the system, a smaller time step is needed and simulations with large ensembles are CPU-
expensive. Two different collision models—the binary collision model and collisions with
fixed Maxwellian background—exist, and they are benchmarked to each other. Solving the
Er from Eq. (5) has been benchmarked to the method in whichEr is solved by iteration. The
latter method is presented in Ref. [24]. Both methods have terminated in same steady-state.

A. Evaluation of the Radial Current 〈 jNC + jvisc〉

In solving Eq. (5), the numerical noise in the resultingEr arises essentially from the
evaluation of the radial current〈 jNC+ jvisc〉 from the particle orbits. Moreover,〈 jNC+
jvisc〉 has a nontrivial dependence onEr and its time derivative, which makes Eq. (5)
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FIG. 2. Flow chart of the ASCOT code.
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highly nonlinear, and its numerical solving complicated. The radial net movement of the
ensemble by collisions is known to be slow in comparison with the faster collisionless
bounce motion of the individual ions in a torus. Locally, this bounce motion provides both
inward and outward radial flux which cancel out and thus makes evaluation of the radial
current statistically demanding. On the other hand, magnetic ripple, interaction with waves,
and orbit losses can provide fast outward motion contained in or added to the bounce motion,
and this may significantly exceed the weak collisional flux of the ions.

In the following, 〈 jNC+ jvisc〉 is calculated on a gridρ`, `= 1, . .M . The gridρ` is
defined asρ`= (`− 0.5)ds for `= 1, . .M , whereds=a/M . The simulation is split into
global time steps1t , during which the ions take numerousintegration stepsalong their
orbits and suffer collisions, and after which the net radial current is evaluated. Instead of
evaluating the current simply as the number of ions crossing theρ`-surface per unit time,
we obtain the ion flux from the net radial displacement of the ions inside a volume element
1V`. This naturally reduces the statistical noise in the ion flux.

The radial current〈 jNC+ jvisc〉 is thus obtained as the summation

〈 jNC(ρ`, ti )+ jvisc(ρ`, ti )〉=
∑

k

e× dρ∗ik,`pk

1t A`ds
. (6)

Here, indexi denotes thei th timeslice,ti = i1t , index ` denotes thè th radial surface,
and indexk runs through the test particle ensemble. The radial displacementdρ∗ik,` is the
fraction of the total radial motiondρ i

k,` minus the polarization drift step that thekth particle
makes betweenρ` − 0.5 ds andρ` + 0.5 ds during thei th time step.A` is the flux surface
area atρ`. The weight factorpk is equal to the total number of ions in a real configuration
represented by thekth test particle. The radial current is thus the sum of the stepsdρ∗ik,` of
the unpolarized radial motion of the test ion multiplied by its chargee during each passage
of the particles in the ensemble through the differential flux surface volume element1V`
around the radiusρ`. The ion density and poloidal and toroidal rotation mass flows can
be evaluated accordingly by replacingedρ∗ik,`/|∇ρ| by dtik,`, m× dθ i

k,`, andm× dφi
k,`,

respectively, in Eq. (6). Here,dtik,` is the fraction of time the test particlek spent in the
volume element1V` during thei th global time step, anddθ∗ik,` (dφ∗ik,`) is the fraction of the
total poloidal (toroidal) movement it made within the volume element1V` during thei th
global time step.

Figure 3 shows the convergence test for the radial current with the ensemble size in a
homogeneous plasma as calculated by this method for a fixedEr together with fixed plasma
background for the collisions. Efficient convergence is demonstrated.

B. Solving the Electric Field

The radial electric fieldEr is solved from Eq. (5) using a first-order integration scheme
in time on the same grid used for the evaluation of〈 jNC+ jvisc〉. The field atti+1 is given
by the arrayEi+1

r,` obtained from the time integral of Eq. (5),

Ei+1
r,` = E0

r,` − (1/α)
∑

i

∑
k

edρ∗ik,`pk

A`ds
. (7)

Here, the arrayE0
r,` gives Er at t = 0 which is the start of the simulation. The sum

over i runs through all global time steps fromt = 0 up to the (i + 1)th time step. The
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FIG. 3. Convergence test of the fluence calculation using different ensemble sizes. Homogeneous toroidal
plasma withn= 5× 1019 m−3, T = 200 eV,R= 1.65 m, B= 2.5 T, andBp= 0.25 T is assumed. The fluence is
measured at the center of a radial annular simulation region fromr = 0.15 m tor = 0.35 m.

method is first order because the orbit tracing; i.e., the evaluation of the radial displacement
dρ∗i+1

k,` is obtained usingEi
r,` from the previous global time step in calculating the drifts.

Comparing the first-order integration scheme with the second-order scheme that involves
iterative solution method for〈 jNC+ jvisc〉 and Er , both calculated consistently up to the
(i + 1)th time step, did not show any significant difference in accuracy for the applied time
steps with simulation periods of a few milliseconds.

Because the viscosity driftvvisc is proportional to the second-order radial derivative ofEr ,
boundary conditions forEr are required. Because of this same term, the time stepdt in the
simulations is restricted by the Courant conditiondt < ds2/(2η|∇ρ|2), making calculations
with very highη impractical. However, using the Braginskii viscosity coefficient defined
in Section II, this constraint is not very severe, but the time step is restricted by the more
stringent requirements of having sufficiently many integration steps during the bounce
period of the orbits and having the time step well shorter than the collision period. The
spatial grid size is important because it determines the resolution ofEr obtained and sets a
lower limit for the ensemble size. With the chosen method for accumulating particle flux,
a coarser grid gives a better statistical accuracy for the current evaluation.

C. Initialization of the Particle Ensemble

In Monte Carlo orbit following codes, it is usually straightforward to initialize the particles
in the configuration and velocity space according to requirements of the problem. In prac-
tice, an ion ensemble that corresponds to the main plasma is initially distributed according
to the assumed background densityn(ρ) and temperatureT(ρ) profiles. The test particles
are distributed uniformly in radius and in poloidal and toroidal angles. The weight factors
assigned to test particles are proportional to the real total particle number contained in the
corresponding phase space volumes and in an ensemble thus reflect various macroscopic
distributions of the particles, e.g., the density profile. In velocity space, the particles are dis-
tributed evenly in the particle pitchv‖/v, and randomly in speed according to a Maxwellian
distribution that corresponds to the local temperature. In the following, we call this kind of
simple initialization a macroparticle initialization. When a fixed neutralizing electron back-
ground is assumed, the radial ion density profile remains practically unchanged, provided
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that the self-consistent radial electric field is evaluated from the quasineutrality condition.
Depending on the collision model, the radial temperature profile of the ensemble may
nevertheless change (see below Section E) even in the absence of heat sources.

With the basic initialization described above, a problem arises in evaluating〈 jNC+ jvisc〉
for strongly inhomogeneous plasmas. This is a consequence of the finiteness of the particle
orbits. Consider an annular volume element1V`. Test ions launched near its inner edge have
significantly larger weight (corresponding to higher density) than ions originating from its
outer edge. Consequently, in the initial phase of a bounce period, there can transiently exist
a finite net current even with closed orbits and no collisions. This transient current decays
away with oscillations on a few bounce time scale, but may severely perturb the solution for
theEr dynamics. This can be avoided by initializing the ions in the invariant space that spans
the different particle orbits. In the presence of collisions, the particles cannot complete the
orbits which makes a proper initialization of the orbits computationally extremely difficult.
Because avoiding any unphysical radial current is of primary importance for solvingEr , an
initialization on collisionless orbits is adopted here. This guarantees that no current arises
at the start from the radial inhomogeneity (and related weight factor variation) even in the
presence of collisions. On a bounce time scale, with such an initialization the presence
of collisions may, however, lead to some modifications of the originally adoptedn andT
profiles, which persist for the rest of the simulation.

In a torus, with closed nested magnetic surfaces the collisionless particle orbits are
closed trajectories on a poloidal cross section. An example of such a trajectory is sketched
in Fig. 4b. In an axisymmetric torus, three orbit invariants are sufficient to specify an orbit.
Such invariants can be, for example, particle total energy, magnetic moment, and particle
pitch or poloidal angle at a given special point on the orbit [26]. In a collisionless plasma, the

FIG. 4. (a) Poloidal cross sections of the cells used for macroparticle initialization in the plasma region. The
scheme of binary collision model is depicted in a cell on the bottom. (b) Subparticle initialization on a collisionless
particle orbit.
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ensemble initialization can be made in a phase space formed by such invariants. However,
in a torus, this has been found to be nontrivial [26].

A convenient way to provide the ion ensemble with a uniform orbit initialization is to
introducesubparticles. This method also avoids the problems related to mapping of the
invariant space. In the subparticle method each original test particle, called amacroparticle
here, is replaced byN subparticles with a weight equal to 1/N times the macroparticle’s
weight, and the subparticles are distributed on the orbit of the original macroparticle. On
the orbit the initial distribution of subparticles is uniform in bounce time; i.e., the time taken
by a particle to traverse the orbit segment between two neighboring initial positions of the
subparticles is invariant. This is shown schematically in Fig. 4b.

In the code, first the macroparticles are identified and their weight is specified as described
in the beginning of this section for macroparticle initialization. Next, the corresponding or-
bit trajectory of each macroparticle is calculated by solving numerically the equation for
the guiding-center motion until the orbit has become fully closed on the poloidal cross
section. Thereafter, the subparticle locations and velocities for initialization on this orbit
are determined, with the condition that the subparticles follow this orbit during their col-
lisionless guiding-center motion. The actual Monte Carlo calculation is then performed
with the ensemble consisting of the created subparticles and their weights. For collisionless
calculations, this kind of initialization has been found to reproduce the macroscopic particle
distributions obtained by the alternative macroparticle initialization (where no splitting to
subparticles is made) at steady state. The required number of subparticles vs. each orbit
for good cancellation of the transient radial currents of the particles after intialization has
been obtained to be relatively large;N= 50–100. However, at the same time the number
of orbits (i.e., of the original macroparticles) for subparticle initialization can be reduced
so that the total size of the ensemble can be kept comparable in both macroparticle and
subparticle initializations.

Figure 5 shows the time evolution of the radialEr -profile for the subparticle initialization
together with a result where no particle splitting was applied. The field was calculated for an
FT-2 [14] tokamak plasma under H-mode conditions, where a strong density gradient exists.
With the subparticle method, 50 subparticles per orbit were applied andEr = 0 att = 0 was
assumed. With subparticles, the field develops much more smoothly than with the conven-
tional initialization and without oscillations to an equilibrium, where strong oscillations and
a rapid drop down to large negativeEr -values at the very start are observed. This is because
in FT-2, because of its high poloidal Mach number|Er /BpvT |, even at modest values of
Er , the system evolution is sensitive to both the initial valueEr (0) and the start-up phase
of the solution (see Section IV). In the subparticle method, the initial radial current stays
negligible ensuring a slow variation ofEr from its initial value. The subparticle method thus
provides aquiescent startfor the simulations and avoids the unphysical variation ofEr by
the numerical radial currents imposed by the weight-factor inhomogeneity. With splitting,
the orbit loss bringsEr down to large negative values at a later stage. This can be seen in
Fig. 5a, where the field evolution, in agreement with the orbit loss mechanism, starts near
the separatrix and subsequently moves further inside. The state (still evolving in Fig. 5a)
at t = 200–300µs is almost double in|Er |-value compared to the case with conventional
initialization. Thus, the initialization method adopted is important for the system evolution
to steady-state. It should, however, be emphasized that the sensitivity to the initialization is
peculiar to configurations where the poloidal Mach number becomes large (≥1) during the
field evolution and/or gradient of the background pressure is strong. For ASDEX Upgrade
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FIG. 5. The evolution of the radial electric field (a) with subparticle initialization and (b) without subparticle
initialization in FT-2 tokamak.R= 0.55 m,a= 0.08 m, I = 22 kA, Bt = 2.2 T with parabolic current profile and
profilesn(r )= 5× 1019[1− (r/a)2]2.5 m−3 andT(r )= 290× [1− (r/a)2]1.3 eV. Four million particles are used
in both simulations with a time step of 1.5µs for updatingEr .

configurations with standard discharge parameters, for instance,|Er /BpvT | is almost
10 times smaller than in FT-2, and no such sensitivity was observed when the ambipolar
neoclassicalEr [4] was used as an initial condition. These results will be further discussed
in Section IV.

It is worth noting that for orbits intersecting the vessel wall or divertor plates/limiter, the
distribution of subparticles is nontrivial. In principle the particles with orbits intersecting
the plasma facing components should not reenter the plasma and, therefore, the subparticles
should not be initially distributed on the section of these orbit on which the particles are mov-
ing inward from the separatrix. However, for collisional plasmas such an initialization may
overestimate the initial orbit loss current since the particles cannot complete the trajectories.
Therefore, to ensure a smooth initialization, a full distribution of subparticles on the orbits
inside the plasma is applied even on the orbits intersecting the plasma facing components.

D. Boundary Conditions

As already implied by Fig. 5, the entire plasma cross section is not necessarily needed
to investigate the relevant physics. The radial electric fields related to L-H transition and
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formation of ITBs, in particular, have radial extent of only a few centimeters even in large
machines like JET and ASDEX Upgrade. Therefore, the computational effort is reduced
enormously by restricting the simulation to a relevant regionρL < ρ < ρR in minor radius.
Whenever there are no special constraints at the boundariesρL andρR posed by the problem,
and when the mass flow parallel to the magnetic field is given at the boundaries,Er can
be evaluated in the regionρL < ρ < ρR by using the well-known neoclassical analytical
ambipolar valueEa(ρ) [4] as the boundary condition atρ= ρL andρ= ρR. If the outer
boundary lies outside the separatrix,ρR > ρs, Er (ρR)= 0 is used.

The boundary conditions atρL andρR may affect theEr profile inside the simulation
region through the gyroviscosity. In order to test this effect, the value ofEr at the outer bound-
ary was varied in a large range to show that the chosen value does not have significant effect
on the results. Simulations were done with boundary conditionsEr (ρ ≥ ρs) = +20, 0, and
−40 kV/m for the ASDEX Upgrade edge parameters in the case which will be described in
Section IV.A. Since the viscosity depends on the second derivative ofEr its effect is to bend
the profile to the boundary value. As the neoclassical gyroviscosity is very weak, theEr

profile is affected only within1ρ ≈ 0.003, which is less than 2 mm inside the separatrix.
However, if the viscosity is anomalous, the effect of the boundary condition extends further
inside, making the profile smoother.

As for the particles at the boundaries, wheneverρL andρR lie inside the the plasma, the
outflowing particles are reflected at these boundaries. This is accomplished by following
the orbits forρ < ρL andρ > ρR in the absence of collisions, gyroviscosity drift, and
polarization drift and by stopping the clock during the time the particles spend in these
regions. This is consistent with the assumption of no source of toroidal momentum and
zero radial current forρ < ρL andρ > ρR.

The ions are initialized withinρL < ρ < ρR, and those hitting the divertor or wall outside
ρ > ρR are promptly reinitialized atρ = ρR. The reinitialization is uniform in pitch and
poloidal angle, with the local Maxwellian velocity distribution. This reinitialization does
not create any physical current in the simulation domain and, being more uniform (in phase
space) than the loss process, it simulates well the replacement of charge lost through the
separatrix. This method has been successfully applied recently, with the outer boundary
at the separatrix,ρR= ρs, to calculate [12] the orbit loss, as well as the related source of
poloidal rotation and its dynamics for L-H transition conditions in ASDEX Upgrade [15].

Whenever the scrape-off-layer plasma outside the separatrixρs is simulated, i.e.,ρR >

ρs, and there are plasma facing components betweenρs andρR, particles hitting these
components are reinitialized still uniformly in pitch and poloidal (and toroidal) angle, but
now the magnetic surface of the reinitialization is the same where the particle hits the
component. This ensures that no radial current is generated by the reinitialization, and
quasineutrality holds everywhere.

E. The Collision Operator

In the past, most particle simulations using Monte Carlo collision operators have assumed
a fixed plasma background for the test particles to collide off. Although such operators do not
conserve momentum nor energy, it has been possible to calculate, for example, diffusion co-
efficients for collisions between unlike particles (or between minority and majority species).
To study the relaxation of plasma rotation in tori, however, the momentum conservation in
collisions is expected to be important.
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In order to properly treat the momentum equation and momentum generation, a binary
collision model [13] that conserves momentum and energy in pairwise collisions between
the ions has been implemented in the ASCOT code. In the poloidal plane the simulation
region is divided into small cells so that the plasma parameters do not vary significantly
inside the cells. Particles in each cell are randomly paired, and small angle collisions are
performed pairwise. The adopted collision operator conserves the number of particles,
the total momentum, and the total energy quasi-locally. This model was recently tested
[21] by calculating poloidal rotation relaxation rates for a homogeneous plasma and by
comparing the perpendicular conductivity and parallel viscosity evaluated by ASCOT with
the analytical expressions [27, 28]. The simulations were carried out for a wide range of
collisionalities and rotation velocities.

The problem with an energy-conserving collision model for totalf -schemes is that
the temperature profile is not sustained by the ensemble without introduction of a proper
energy source/loss for the simulation particles. Therefore, in some cases it is useful to let
the particles collide with a fixed background without conserving energy or momentum.
Under such conditions, the collisions themselves automatically provide the source and
sink of heat and sustain the given temperature profile of the ensemble. Figure 6 shows a
comparison of steady-state radialEr profiles obtained for the plasma periphery in ASDEX
Upgrade using the binary collision model and the collision operator that assumes a fixed
plasma background. The steady-state solutions obtained are very similar, indicating that
momentum conservation does not play an important role in problems where the poloidal
rotation is supported by the orbit loss current. This is because, as a result of the orbit loss,
the poloidal rotation cannot relax by generating parallel flow intermediated by momentum
conservation in collisions [21].

The binary collision model is used as a default in ASCOT, but also an option for collisions
with fixed background is included for benchmarking and some special purposes. There is no
significant difference in computation speed between the collision models. In the problems in
which theEr profile is solved at the plasma edge in the presence of ion orbit loss mechanism,
however, the collisions with fixed background are more suitable than the binary collision
model in longer runs if the aim is to obtain the result for a given temperature profile. When
the energy-conserving collision operator is used, the plasma would indeed cool all the

FIG. 6. Comparison of the steady-stateEr -profiles between the simulations run with the momentum (and
energy) conserving binary collision operator and with an operator making collisions with a fixed background.
ASDEX Upgrade parametersR= 1.65 m, a= 0.5 m, Bt = 2.5 T, I = 1 MA with a parabolic current density
profile and linear ramps fromn= 4× 1019 m−3, T = 200 eV at the separatrix to 1.9 times larger values at 2 cm
(on the equator) inside from the separatrix.
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time since the lost particles, which are mainly energetic, are replaced by thermal particles
reinitialized atρ = ρR. Thus, to maintain the experimental radial temperature, we rather
heat the plasma with the test particle collision operator, which assumes fixed Maxwellian
background. Both methods give the same quasi steady-stateEr profile if the simulation
time is short compared to the time in which the temperature profile changes significantly.

The binary collision operation is performed at specific time instants for the whole
particle ensemble together with evaluation of macroscopic particle distributions and up-
dating of the radial electric field from Eq. (5). The interval (global time step) between
these instants is taken a small fraction of the minimum of collision and bounce times of
particles in the ensemble, and is typically in the range of 0.1–10µs. With fixed back-
ground collision operation, each particle can be operated separately at specific time in-
stants during their guiding-center motion. Again, the interval between these instants is
taken a small fraction of the minimum of collision and bounce times of this particle at
that time. Typically, 25–100 collision operations are performed during each bounce of the
particle.

IV. SIMULATION OF NEOCLASSICAL PLASMAS FOR CONDITIONS

WITH TRANSPORT BARRIER

In the following, the present simulation method is applied both to simulate globally
the radial electric field in the FT-2 tokamak for L-mode and H-mode conditions and to
evaluate locally the sheared neoclassicalE× B flow at the edge region of ASDEX Up-
grade for L-H transition conditions. As the outer boundary, both simulations use the sep-
aratrix or the radius at the limiter. In the SOL region, the ions are followed until they
hit the plasma-facing components (limiter, divertor plate, or wall), and after that they
are regenerated at the outer boundary as explained in the previous section. Because the
radial current is taken zero, no large rotation is assumed as an initial condition, and
no toroidal momentum source is adopted in the present scheme, no significant parallel
flow generation takes place and, consequently, momentum conservation will not be an is-
sue, and collision operators with fixed plasma background will be used in the following
examples.

A. Edge Plasma Simulation for the L–H Transition in ASDEX Upgrade

The ASDEX Upgrade [15] tokamak has the minor radiusa= 0.5 m, major radius
R= 1.65 m, elongation 1.6, plasma currentI = 1 MA, and the toroidal magnetic field
Bt =−2.5 T. Corresponding to the discharge 8044 (a deuterium plasma), a separatrix den-
sity 1.2× 1019 m−3 and temperature 140 eV with about 1.9 times larger values at 2 cm
inside the separatrix are adopted for reference. The radial electric field is initialized to its
neoclassical ambipolar field (assuming zero parallel average mass flow)

ENC= (kBT/e)(n′/n+ γT ′/T), (8)

where the primes denote radial derivative, andγ , given in Ref. [4], depends on the colli-
sionality. In minimum 200,000 simulation (sub-)particles are distributed along the sections
of the ion orbits that lie within the 2-cm wide simulation region. The global time step used



542 HEIKKINEN ET AL.

FIG. 7. The evolution of the radial electric field without subparticle initialization for the ASDEX Upgrade
with parametersR= 1.65 m,a= 0.5 m, Bt = 2.1 T, I = 1 MA with a parabolic current density profile and linear
ramps fromn= 1.2× 1019 m−3, T = 120 eV at the separatrix to 1.9 times larger values at 2 cm (on the equator)
inside from the separatrix. 3.2 million simulation particles using a time step of 2.5 µs and the radial grid size
0.3125 mm (on the equator) for updatingEr . Neoclassical ambipolarEr value withγ = 1.5 is used at the left
boundary and at the initialization ofEr .

for advancing the electric field is 1.25µs. For most of the orbits, more than four integration
steps are used to advance the particle orbits within each step. Figure 7 shows the evolution
of the Er profile in the region 0.96< ρ < 1 (ρR= 1) and indicates, in a millisecond time
scale (i.e., within a few collisional times and a few bounce times), the formation of a strong,
sheared inward field near the separatrix. The numerical value forEr on the outboard equator
can be obtained usingdρ/dr = 2 m−1. Deeper inside the plasma, the field remains close to
its initial, analytical ambipolar value. The inaccuracy in determiningγ for givenn andT
profiles from the expressions in Ref. [4] explains the overshoot ofEr at the beginning of
the simulation and the related temporal oscillation of theEr profile that is damped during
the simulation. The field enhancement near the separatrix has recently been interpreted
[12, 29] to arise from the ion orbit loss and the radial current related to it: a larger inward
Er (in comparison to the neoclassical ambipolar value) is required to drive diffusive current
inward to balance the orbit loss current as sketched in Fig. 1. It is of interest to note that
the calculation remains stable and a steady-state is achieved at an instantaneous noise level
of 5–10 % for the present simulation with 3.2× 106 simulation particles. For steady-state
conditions, it has been possible to further reduce this noise by simple time-averaging of the
resultingEr profiles from sufficiently long runs.

Figure 8 shows steady-stateEr profiles for various separatrixT-values obtained by a
scalar multiplication from the reference profile. The analytical ambipolar profilesEa(ρ)

are shown for comparison. The analytical values are based on a number of assumptions
made in deriving the expression from the drift-kinetic equation [4]. The present simulation
is carried out for fairly steep plasma gradients, with particle orbit widthsw comparable
to the gradient scale lengthLg, while the theory in Ref. [4] is based on the assumption
w¿ Lg. At the lowest temperature, the enhancement ofEr is weak, as expected from the
orbit loss model, and the field remains close to the analytical value. For increasing edge
temperature and edge temperature gradient, the simulated field becomes strongly sheared
and, indeed, theE× B shear becomes sufficient for turbulence suppression [12] at L–H
transition conditions (T(ρR)= 120 eV) of ASDEX Upgrade.
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FIG. 8. Steady-state radial electric field profiles at various separatrix temperatures for the ASDEX Upgrade
with the separatrix density 1.2× 1019 m−3 and 1.9 times larger temperature and density values at 2 cm (on the
equator) inside from the separatrix. The neoclassical ambipolar values from Eq. (8) are shown for comparison.
200,000 simulation particles were used.

B. Neoclassical Electric Field in FT-2 Tokamak

On FT-2 tokamak (R= 0.55 m, a= 0.08 m, I = 22 kA, Bt = 2.2 T), a spontaneous
transition to improved confinement mode has been observed in the presence of lower hybrid
heating [14]. The barrier is believed to form as a result of a strongly sheared electric field
Er . The small plasma current leads to trapped orbits with very large banana widths, on the
order of the minor radius. Also, the toroidal ripple is large, and the ripple-loss region extends
deep into the bulk plasma. Both of these features can lead to significant direct orbit losses,
and therefore it is suggested that purely neoclassical effects might explain the formation of
a radial electric field with significant enough shear to suppress turbulence.

We have simulated the generation of the radial electric field in FT-2 geometry. The
simulations cover the entire plasma up to the limiter radius atρR, and they are carried out
for two different plasma conditions: for poor confinement characteristics (dubbedL-mode)
and for improved confinement characteristics (dubbedH-mode). The corresponding plasma
profiles are shown in Fig. 9. As in the ASDEX Upgrade study, the collision model with fixed
electron and ion backgrounds is used. The ions are followed in the scrape-off-layer (SOL)
until they either intersect the wall or the limiter or return to the main plasma. The limiter is
simply defined as a region in the SOL limited by two poloidal angles:θL ,low < θ < θL ,high

with θL ,low=−68◦ andθL ,high= −22◦.
Figure 10 gives the smoothed-outEr profiles from a 0.5-ms-long simulation (with a

0.75-µs global time step) that used 800,000 test particles (hydrogen) for both L- and
H-mode cases. The simulation time was sufficient for obtaining a steady state (compare
Fig. 5). The noise in these simulations was somewhat larger than in the ASDEX Upgrade
edge plasma simulation for reasons discussed below. The neoclassical ambipolarEr profiles
from Eq. (8) are shown for comparison. For the L-mode, the field remains close to the pre-
dicted ambipolar value in most of the simulation region. At outer regions, close to the limiter
radius, a modest enhancement in the field is observed. On the other hand, for the H-mode case
a strongly sheared field structure with a significant deviation from the ambipolar values is
obtained.

It is important to note that for the L-mode, the Mach number of the poloidal rotation
|Er /Bpvt i | is close to one, and for the H-mode case it is well in the supersonic region.
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FIG. 9. (a) Temperature and (b) density profiles used for the FT-2 simulations in L-mode and H-mode
conditions of the experiments.

Consequently, in the H-mode, theE× B rotation in the poloidal direction is so strong
that it completely dominates the poloidal motion arising from the thermal parallel motion.
Thus, the orbit widths become strongly squeezed. This, together with the steep gradients
(in comparison to the orbit widths in the absence ofEr ), indicates that the standard neo-
classical theory is not valid. Because the orbit widths are strongly squeezed, the enhance-
ment in Er for the H-mode case here doesnot have its origin in the orbit loss (although
the effect of orbit losses can be seen near the limiter), but is a direct consequence of
the neoclassical ambipolar balance, the description of which requires a much more com-
plete analytical treatment than hitherto presented in the literature. It should be mentioned
that the order of magnitude ofEr and its gradient were obtained independent both of
the initial conditions (Er = 0 or Er = Ea) on a bounce time scale and of the initialization
scheme.

The Er structures obtained for FT-2 were found to be prone to a slow numerical insta-
bility which was indicated by a steady growth of the field values in opposite directions,
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FIG. 10. Smoothed time-averaged profiles of the steady-state radial electric field for the FT-2 L- and H-mode
profiles.

FIG. 11. The snapshot of the radial electric field profile att = 500µs for an FT-2 simulation for the H-mode
profiles using no gyroviscosity enhancement. The unstable spikes appear roughly with a period of the spatial grid
size used for evaluation ofEr .
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positive and negative, on the consequtive grid pointsρm andρm+1, respectively. This is
demonstrated in Fig. 11, which shows theEr structure for the H-mode case after a 0.5-ms
simulation. This uncontrolled (but at later times saturating) grid instability was not found
to be suppressed by a diminishing time stepdt nor by the increase of ensemble size. An
iterative second-order time integration of Eq. (5) was not helpful either. It was observed that
increasing the perpendicular viscosity coefficientη significantly weakens the growth of this
instability. The results in Fig. 10 were obtained with a viscosity 50 times the Braginskii vis-
cosity. The appearance of the grid instability in the present FT-2 case is probably connected
to the high poloidal Mach number of the rotation at modestEr amplitude (in contrast to
ASDEX Upgrade where no instability was observed and where the Mach number stays
below unity), but its mechanism has not been thoroughly explained. The most efficient way
to avoid this instability was to evaluate the fluence in Eq. (7) by averaging its value over
the three neighboring grid cells̀− 1, `, and`+ 1 around̀ in advancing toEr,`,i+1. This
prevents the positive feedback between the electric field energy and the observed unstable
collective motion of the ions toward the grid knot points: at such a grid point, in the absence
of the averaging, the electric potential grows, the kinetic energy of these ions decreases and,
because of the high poloidal Mach number, the ions become highly localized and attached to
that radius.

V. CONCLUSIONS

Using the neoclassical radial current balance (quasineutrality condition) with the polar-
ization current in a Monte Carlo particle following code, it is demonstrated that neoclassical
rotation dynamics and the radial electric field can be resolved in a torus without resorting to
a full solution of the Poisson or Maxwell equations. Filtering the turbulent fields in this way
out reduces the computational effort significantly and makes the neoclassical phenomena
more transparent. However, the present reduced model has indicated a number of important
elements which must be shared also by the full model, for example, the gyrokinetic sim-
ulation, if one wishes the proper neoclassical behavior to be simulated. There are specific
requirements for the time step, grid size, ensemble size, particle initialization, and reinitial-
ization, as well as for boundary conditions, which must be satisfied for proper description
of particle and heat flux in the presence of steep gradients, finite orbit widths, and orbit
losses.

It was shown that the solving of the polarization equation (5) forEr can be kept stable,
even with the first-order explicit integration scheme, provided the poloidal Mach number
|Er /BpvT | remains well below unity. With typical tokamak parameters relevant for fusion
studies, the integration accuracy is acceptable for several millisecond integration runs us-
ing some tens of time steps per orbit bounce and collision time and ensembles containing
about thousand particles per radial grid cell applied for resolvingEr profile. The method
remained stable and accurate with the presence of orbit losses, and the first self-consistent
neoclassical radial electric field profiles were produced for conditions relevant for trans-
port barrier formation with largeEr shears. However, the polarization equation becomes
numerically unstable if the Mach number becomes of the order of unity or larger. This
instability has been found to arise from the ion collective attraction to grid points where the
electric potential grows, and where the ions lose their kinetic energy, the latter being trans-
formed to the electric potential energy thus reinforcing the potential growth, and become
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frozen at this radial location by increased orbit squeezing as a result of the increased|Er |.
It was not possible to stabilize this instability by decreasing time step, increasing ensem-
ble, by changing the grid size, or by using implicite integration schemes. The increase of
gyroviscosity restrains the instability, but the most efficient way to suppress it has been by
averaging the flux in Eq. (5) over the three neighboring radial grid cells in advancingEr in
Eq. (5).

With large orbit widths, steep gradients, and a large poloidal Mach number, the solutions
have been found to become sensitive to the initialization. Although the proper initialization
is not possible without knowing the very solution, orbit initialization, i.e., distributing the
ensemble particles uniformly on the particle collisionless orbits, has been found useful for
the solving of the polarization equation. It is important to note that this problem is an issue
for any solving method of the particle distribution function, and should be taken into account
in toroidal plasma simulations, whether containing turbulence physics or not. With the orbit
initialization, one can avoid the unphysical radial flux arising in the starting phase of the
particle bounce motion in an inhomogeneous plasma. This then prevents any uncontrolled
change ofEr at this stage.

It should be noted that in the radial current balance, one can also include external current,
e.g., currents running in a probe shaft extending into the plasma region. In such a case, the
current running in the plasma compensates the current in the shaft. The nonzero current
in the plasma creates a toroidalEj × EB force which drives momentum and rotation in that
direction. Here, the momentum conservation in collisions is important. The latter can be
taken into account in the present method with a binary collision technique, as was described
in the text. Using the present code, the biased probe excitation of theL–H transition in
the TEXTOR tokamak was successfully modeled [12]. Here, in good agreement with the
theory, production of propagating soliton-likeEr structures was observed for the first time
in simulations.

Examples shown in Section IV demonstrate the power of the present simulation method.
Both in small- and medium-sized tokamaks, the neoclassical radial electric field has been
solved under conditions close to the transport barrier formation. The observation of large
shears inEr even without bifurcative transition indicates that the neoclassical mechanisms
can play an important role in the creation of transport barriers. Various nonambipolar fluxes
such as ripple loss, orbit loss, rf-induced fast ion flux, MHD mode generated flux, flux
resulting from stochastic magnetic field lines, flux arising from charge exchange collisions,
and probe excited flux can be included straightforwardly and investigated. Moreover, the
neoclassical equilibria can be obtained with arbitrary initial conditions. It is not difficult
to extend the present method to include the electron dynamics by solving the electron
and ion orbits together and evaluating their total current for Eq. (5). However, as here
the particle radial distribution evolves, special care must be exercised in reinitialization of
the particles and in providing a heat source. Such a problem was already considered in the
context of biased probe excitation ofEr [12], where reinitialization at both boundaries of
the simulation region was mandatory.
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