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A 5D Monte Carlo particle simulation method for advancing rotating plasmas
in tori is presented. The method exploits the neoclassical radial current balance
(quasineutrality condition). Including the ion polarization current gives the time rate
of change of the radial electric field and related evolution of the rotation velocity
components. A special orbit initialization for a quiescent start and an efficient radial
flux solving algorithm with reduced numerical noise are developed. Numerical sta-
bility of the method with respect to the strength of the perpendicular viscosity and
Mach number of the poloidal rotation is investigated. This new approach enables
one to separate the nonambipolar transport characteristics from the ambipolar ones.
Because nonambipolar transport can support sheared flows, this model can provide a
very efficient tool for studying transport barriers and related neoclassical mechanisms
in toroidal plasmas. © 2001 Academic Press
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I. INTRODUCTION

While neoclassical toroidal plasmas have been extensively studied theoretically, on
few global numerical simulations of such plasmas exist. However, in high-performar
tokamak discharges the plasma conditions can seriously challenge the analytical exj
sions for the neoclassical transport. Various effects including toroidicity, details of t
collision operator, convection and inertia, rotation, finite ion orbits, steep plasma grs
ents, and boundary conditions push neoclassical theory to its limits. On the other he
simulations in which transport is assumed highly anomalous and is modeled by tre
port coefficients calculated from various turbulence models are becoming inadequate
that the transport in various improved confinement regimes can approach the neoclas
level. Therefore, there is a growing need for a reliable numerical simulation of neoclass
plasmas.
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Local test particle simulations with Monte Carlo collision operators have been appli
to evaluate the transport coefficients [1] in both tokamaks and helical devices. Here, s
main elements of the neoclassical transport, such as particle or heat diffusion eithe
toroidal ripple or by collisions between unlike particles (including alpha particle, impurit
and other minority ion transport), have been identified to be generally in good agrt
ment with the neoclassical theory in appropriate limits. However, neither the neoclass
ambipolar electric field nor the momentum or energy conserving collisions fundame
tal for a proper evolution of the neoclassical plasma has been simulated in any of th
works. The latter collisions require parallel processing of a large amount of particle
which has become practical only very recently. Recent advances in computer efficie
have made global particle simulations feasible in small- and medium-size toroidal plas
configurations [2].

The development of gyrokinetic particle models [3], based on drift orbits of electrons a
ions in tokamak geometry and including finite Larmor radius effects and magnetic mirrori
forces, has allowed the investigation of self-consistent particle orbits and electrostatic po
tial fluctuations, together with basic neoclassical properties [4] of such plasmas. Howe
because of the dominance of turbulence in determining plasma transport characteris
many of the neoclassical mechanisms either cannot be discriminated or are sacrifice
various assumptions for greater computing speed.

Lin et al.[8] carried out steady-state, multispecies simulation of neoclassical transp
using a linearized, time-varying weightidérscheme [5] with Monte Carlo collision opera-
tors corrected for conservation of momentum and energy. However, as the total distribu
f was not resolved, the ambipolar radial electric field and rotation dynamics were not fou
Methods that use the tot&ltechnique [6—8] can, in principle, model the true charge separ:
tion of ions and electrons and solve the ambipolar electric field. However, these conventic
gyrokinetic algorithms have so far been applied only to studies of low-frequency microi
stabilities and related turbulent transport in tori. This has been accomplished by using
improve the computing speed) the assumption of adiabatic electron distribution or by
glecting collisions, thus eliminating the neoclassical ambipolar field and rotation. Whene
the electron distribution has been assumed fixed or electrons have been followed accot
to drift-kinetic approximation, ambipolar modes have been found from the solutions
the gyrokinetic Poisson relation [9]. However, no results for the global neoclassical plas
dynamics and equilibrium have been presented. Three-dimensional gyrokinetic simulati
clarifying the interaction of the neoclassical ambipolar field and turbulence-generated fi
are in preparation [10] and should illustrate the time evolution of the field.

In the present work, an alternative approach to a consistent simulation of neoclass
plasmas is presented. In this approach the radial electric field is solved from the ra
current balance (quasineutrality condition). This corresponds to resolving the gyrokine
Poisson relation essentially in the limitlot= 0; i.e., all electrostatic modes with finite wave
vectork are neglected. This enables us to obtain the true neoclassical balance, becaus
ambipolar microinstability generated diffusion not affecting the radial current balance
filtered out. The dynamics of the radial electric fi@ldcan be obtained directly from the ion
polarization drift, which is proportional €E, /9t. Recently, this technique was successfully
applied when the relaxation d&; to equilibrium with an appearence of geodesic acousti
modes was investigated [11].

A global analysis that includes finite gradients in the background parameters is not
sible by analytical means but requires particle simulation. The present scheme for sol
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E; provides a general way of finding the neoclassical equilibrium for arbitrary plasma cre
section, tokamak aspect ratio, and background gradients, and it avoids all the nume
complications (by sacrificing the turbulence physics) arising from solving the Poisson re
tion correctto alk. Itis shown that such important problems as orbit loss (and biased prol
or poloidal rotation generated by background gradients at an L—H transition [12] toget
with the related radial electric field dynamics can be self-consistently and directly sol\
with the present numerical method. The scheme is essentially & tot@thod, and it is im-
plemented with an option for a binary collision operator [13] that conserves momentum ¢
energy pairwise in collisions suitable for totBdlmethods only. These conservation proper-
ties are fundamental in proper treatment of the rotation dynamics and neoclassical trans
in general. Thé f-method provides low noise only for problems in which deviations fron
Maxwellian distribution are small. However, in the present problem, the deviations can
large as a result of steep gradients and the presence of an ion orbit loss mechanism. Thu
low noises f -technigue is not suitable for this problem since disturbances from Maxwelliz
are most probably large.

The paper is organized as follows: The neoclassical radial current balance and the me
for solving the radial electric field are introduced in Section Il. This is followed by
description of the numerical implementation of the method in Section IIl. The initializatic
schemes and the algorithms for resolving the fluxes and advancing the electric field
well as the stability issues of the method, are discussed. Section IV presents both gl
and annular simulation results for Physical Tokamak-2 FT-2 [14] and Axially Symmett
Divertor Experiment ASDEX Upgrade [15] tokamaks showing both spatial and tempo
numerical convergence for the calculated radial electric field at transport barrier transit
conditions. The conclusions are given in Section V.

Il. RADIAL CURRENT BALANCE

In neoclassical plasmas, a radial electric field arises because of different diffusion rate
ions and electrons. This electric field ensures quasineutrality and makes the radial fluxe
electrons andions equal [16] (also a consequence of automatic ambipolarity in the case c
isymmetry and momentum conservation in collisions). This flux corresponds to the flux a
ing from ion—electron collisions. In the present particle simulation method, the radial elec
field E; = (E (p, 0)) = —(d®(p)/dp){|Vp|) on a magnetic surface with the coordinate
is evaluated from the conditidr), ) = Ofor the radial current density. A general geometry
of the simulations is depicted in Fig. 1. The conditign = 0 has to hold for all values of
p and timet. Here,(- - -) denotes the flux surface average, @&rid the poloidal angle.

In the following, radial flux arising from ion—electron collisions is not considered becau
it causes only ambipolar diffusion, which does not affect the radial current balance.
helical systems are not considered, the electron current remains small and is neglected
radial current density is therefore

jr(p, 0) = inc + jvisc + Jpols 1)

where the terms on the right-hand side correspond, respectively, to neoclassical re
ion current (arising from standard guiding-center drifts, excluding the polarization drif
gyroviscosity current, and polarization current. The polarization driftis a real guiding-cen
drift. Here, jpo is written separately froniyc because it depends @k, /ot, which is to

be solved. In the simulation, the curretc, which is not a genuine guiding-center drift,
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FIG. 1. Poloidal cross section of the (axisymmetric) toroidal simulation geometry. Contributions from ork
loss and return current for the radial current balance are shown.

and jpo can be generated by assigning, locally, each ion the following radial drift velociti
(keepingd and toroidal angle intact during the corresponding drift step) [17]:

wise = —(1/ 2B)[%Er (p, 0)/3p%]|V I?, )
vpol = (1/ 2B)IE; (p, 6) /. ®3)

Here,2 = eB/mis the cyclotron frequency of an ion with chargand massn, and B

is the magnetic field calculated locally @t, ). The perpendicular (gyro)viscosity coeffi-
cient is given by [18)) = ng, = (3/10)kg T vi; /mS?, and the ion—ion collision frequency
is vii =€e*In An/(4re2m?v), where InA is the Coulomb logarithmeo is the vacuum
permittivity, andn andT are the density and the temperature of the ions, respectively.

It should be noted that;sc, unlike the other drifts considered, does not arise from the drif
of individual ions, but is estimated as averages of the bulk plasma behavior. Its true fc
would require resolving the gyromotion (and possibly turbulence), which would make t
simulation too CPU-expensive. Thus, we rather treat itin an order-of-magnitude sense u
Eqg. (2). The bulk ion rotation spead binormal to the magnetic field (perpendicular to
the magnetic field and tangential to the magnetic surface) is approximated Byxttg
flow velocity in this direction. This is well justified because the viscosity drift become
important only for binormal rotation speeds much larger than the diamagnetic flow spe
This should capture the first-order effects of the gyroviscosity.
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For an ion ensemble, the polarization current can be writtej @8 = a(0)d(E: (o,
0))/ot, where

IVol(oi,6) pi 1
= ’ 4
“0) =2 G 6 Blor. ) [V l) AV() @

and}_; denotes the sum over all ions in the ensemble with positiprg within the flux
surface volume elementV at p. p; is the weight factor equal to the total number of ions
in a real configuration represented by thietest particle. Thus, can be solved from the
equation

9E; /9t = —(1/)(jnc + Jvisc) ®)

on flux surfacep at timet. This equation is valid for all collisionality regimes. Adding
the viscous drift velocity to the guiding-center motion is not essential for deriving Eq. (
It is rather a small correction which may have some effect in regions where the elec
field changes extremely rapidly, e.g., as a result of the applied boundary condition. T
perpendicular Braginskii viscosity [18] is hot present in the gyro-center equations sinc
is not a real guiding-center drift, but is a fluid term related to the gyration of an ensem!
of particles. Since it affects the current, it is included in the motion of particles. It shou
be noted that the neoclassical enhancements, related to the inertia in poloidal rotation |
are hidden in their complete form i, and do not appear explicitly in the currerijgisc)
and(jpol)-

The total currenf, in steady-statejfo = 0), consists ofinc and jyisc. jnc itself consists
of many different components; two of them are shown in Fig. 1 for an interesting ce
of radial current balance near a separatrix of a tokamak. Sipgds small in general, a
so-called return currernjte; driven by an inward radial electric field and the orbit loss curren
joL are the main components of current balance at the edge. These current compon
however, are carried out by the same test particles and cannot be separated in the col
the simulation, the particle guiding-centers in an ensemble are followed in a drift-kine
formalism in the presence of a full collision model operator. Some of the particles
the divertor or material wall and, thus, phenomenologically, it is possible to talk abc
loss current. This current component is balanced by the return current to which these
particles may have earlier contributed or may contribute again after their reinitializatic
The power of the present simulation method is that there is no need to make any separ
between the return and torque driving currents.

The present method is incomplete in the sense that the poloidal electric field car
be solved simultaneously in a consistent way. Although the latter can in many case:
neglected to a good accuracy, and it seldom plays a dominant role in neoclassical phy
if so desired, the poloidal variation of the electrostatic potedti@) on a magnetic surface
may be included to a satisfactory accuracy by taking adiabatic perturbation of distributior
electronsine = (Npe/ kg Te) (® — (P)) and using quasineutrality condition on the surface
In the following, the inclusion of the poloidal electric field is not investigated. There are
problems in extending the present method to helical systems where electrons in additic
ions may play an important role in the current balance.
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lll. PARTICLE SIMULATION MODEL

The core of the present method for solviggs the evaluation of the ion radial current, i.e.,
the right-hand side of Eq. (5). This can be accomplished by accumulating the net radial
motion in test particle simulations. We have implemented our method into the Monte Cg
particle-following code ASCOT [20]. In ASCOT, each patrticle is followed along its guiding
center orbit determined by the x B, gradient and curvature drifts, collisions, polarization,
and gyroviscosity drifts. The particle following takes place in arealistic geometry, e.g., int
one shown in Fig. 1, including the region outside the separatrix. Magnetic background c
are imported in the code only in two dimensions (neglecting toroidal dependence), but
toroidal ripple can be included in the analysis by assuming a sinusoidal perturbBtion
Bé sin(N¢) to the magnitude of the magnetic field (see, e.g., Ref. [23]). Thus, calculatio
are not necessarily based on an axisymmetric tokamak model. In the ASCOT code,
guiding-center equations are written in straight magnetic field line coordinates [23] usi
canonical Hamiltonian variables to avoid numerical drifts. The magnetic background
assumed stationary. In simulations of evolutiorEpfon a time scale that is fast compared
to the evolution of the background by particle transport, electrons can be assumed to pro
a stationary neutralizing background and are not simulated. Because the calculd&jon o
is based on the balance of radial currents, no ambipolar processes are included. There
as already mentioned in Section I, also the ion—electron collisions are neglected. Figu
shows the flow chart of the ASCOT code.

For fixed E,, the adopted numerical model has been recently tested in Refs. [21, 22]
calculating poloidal rotation relaxation rates for a homogeneous plasma and by compa
the perpendicular conductivity and parallel viscosity evaluated by ASCOT with the ar
lytical expressions in Refs. [25, 28]. The simulations were carried out for a wide range
collisionalities and rotation velocities. Qualitative and, also, rough quantitative agreem
was found, but some differences were identified to arise from simplifications made in
analytical theory.

In solving the radial electric fields from neoclassical current balance, three essential p
of the code are (a) orbit integration, (b) collision model, and (c) subroutine which dgjves
from the flux of particles (evaluated from guiding-center orbits in the presence of collisio
and other interactions). For these three main parts there exist two independent metho
the code which are benchmarked to each other. In orbit integration, guiding-center equat
in straight field line coordinates are used, which leads to complicated but efficient syst
of equations. These orbits have been benchmarked to the guiding-center orbit solve
Cartesian coordinate system, in which equations are simpler but because of the inacct
of the system, a smaller time step is needed and simulations with large ensembles are (
expensive. Two different collision models—the binary collision model and collisions wit
fixed Maxwellian background—exist, and they are benchmarked to each other. Solving
E; from Eq. (5) has been benchmarked to the method in Wjdk solved by iteration. The
latter method is presented in Ref. [24]. Both methods have terminated in same steady-s

A. Evaluation of the Radial Current (jnc *+jvisc)

In solving Eq. (5), the numerical noise in the resultiBg arises essentially from the
evaluation of the radial currentinc + juvisc) from the particle orbits. Moreovefjnc +
jvisc) has a nontrivial dependence @& and its time derivative, which makes Eq. (5)
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highly nonlinear, and its numerical solving complicated. The radial net movement of t
ensemble by collisions is known to be slow in comparison with the faster collisionle
bounce motion of the individual ions in a torus. Locally, this bounce motion provides bc
inward and outward radial flux which cancel out and thus makes evaluation of the rac
current statistically demanding. On the other hand, magnetic ripple, interaction with wav
and orbit losses can provide fast outward motion contained in or added to the bounce mo
and this may significantly exceed the weak collisional flux of the ions.

In the following, {jnc + jvise) IS calculated on a grighy, £=1, ..M. The grid p; is
defined asp, = (¢ — 0.5)dsfor £=1, ..M, whereds=a/M. The simulation is split into
global time stepsAt, during which the ions take numeroirgegration stepslong their
orbits and suffer collisions, and after which the net radial current is evaluated. Insteac
evaluating the current simply as the number of ions crossing tsirface per unit time,
we obtain the ion flux from the net radial displacement of the ions inside a volume elem
AV,. This naturally reduces the statistical noise in the ion flux.

The radial currentjnc + jvise) is thus obtained as the summation

e x dpj, P

. 6
AtAgdS ( )

(inc(oe, ) + Juisc(oe, 1)) =Y
k
Here, indexi denotes theth timeslice,t; =i At, index ¢ denotes theth radial surface,
and indexk runs through the test particle ensemble. The radial displacemg"@tis the
fraction of the total radial motiodpf“ minus the polarization drift step that tkth particle
makes betweep, — 0.5 ds ando, + 0.5 ds during theth time step A, is the flux surface
area afp,. The weight factopy is equal to the total number of ions in a real configuratior
represented by thieth test particle. The radial current is thus the sum of the sd;a{jg of
the unpolarized radial motion of the test ion multiplied by its chardaring each passage
of the particles in the ensemble through the differential flux surface volume elemént
around the radiug,. The ion density and poloidal and toroidal rotation mass flows ca
be evaluated accordingly by replaciegp;’,/|V | by dt ,, m x d6 ,, andm x d¢} ,,
respectively, in Eq. (6). Here@lt{("Z is the fraction of time the test particlespent in the
volume elemeni\V, during thei th global time step, and@[ffz (d¢;;f£) is the fraction of the
total poloidal (toroidal) movement it made within the volume elem&kt during theith
global time step.
Figure 3 shows the convergence test for the radial current with the ensemble size
homogeneous plasma as calculated by this method for aliixeafjether with fixed plasma
background for the collisions. Efficient convergence is demonstrated.

B. Solving the Electric Field

The radial electric fielE, is solved from Eq. (5) using a first-order integration scheme
in time on the same grid used for the evaluatior g + jvisc). The field att; ;1 is given
by the arrayE:ﬂgl obtained from the time integral of Eq. (5),

: edp*i P
B =B — W 303D ()
i k

Here, the arrayERK gives E; att=0 which is the start of the simulation. The sum
overi runs through all global time steps from=0 up to the { + 1)th time step. The
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FIG. 3. Convergence test of the fluence calculation using different ensemble sizes. Homogeneous tor¢
plasma withn =5 x 10" m=3, T =200 eV,R=1.65m,B=2.5T, andB, =0.25 T is assumed. The fluence is
measured at the center of a radial annular simulation regionffrer.15 m tor =0.35 m.

method is first order because the orbit tracing; i.e., the evaluation of the radial displacen
dp,jf[l is obtained usingEﬁ’g from the previous global time step in calculating the drifts.
Comparing the first-order integration scheme with the second-order scheme that invo
iterative solution method fofjnc + jvisc) and E;, both calculated consistently up to the
(i + 1)th time step, did not show any significant difference in accuracy for the applied tir
steps with simulation periods of a few milliseconds.

Because the viscosity driftsc is proportional to the second-order radial derivativ&gf
boundary conditions foE, are required. Because of this same term, the timedit@pthe
simulations is restricted by the Courant condititin< ds?/(2n|V p|?), making calculations
with very highn impractical. However, using the Braginskii viscosity coefficient define
in Section Il, this constraint is not very severe, but the time step is restricted by the m
stringent requirements of having sufficiently many integration steps during the bout
period of the orbits and having the time step well shorter than the collision period. T
spatial grid size is important because it determines the resolutigp olftained and sets a
lower limit for the ensemble size. With the chosen method for accumulating particle flt
a coarser grid gives a better statistical accuracy for the current evaluation.

C. Initialization of the Particle Ensemble

In Monte Carlo orbitfollowing codes, itis usually straightforward to initialize the particle
in the configuration and velocity space according to requirements of the problem. In pr
tice, an ion ensemble that corresponds to the main plasma is initially distributed accorc
to the assumed background density) and temperaturé (o) profiles. The test particles
are distributed uniformly in radius and in poloidal and toroidal angles. The weight factc
assigned to test particles are proportional to the real total particle number contained ir
corresponding phase space volumes and in an ensemble thus reflect various macros
distributions of the particles, e.g., the density profile. In velocity space, the particles are
tributed evenly in the particle pitaly /v, and randomly in speed according to a Maxwellian
distribution that corresponds to the local temperature. In the following, we call this kind
simple initialization a macroparticle initialization. When a fixed neutralizing electron bac
ground is assumed, the radial ion density profile remains practically unchanged, provi
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that the self-consistent radial electric field is evaluated from the quasineutrality conditi
Depending on the collision model, the radial temperature profile of the ensemble n
nevertheless change (see below Section E) even in the absence of heat sources.

With the basic initialization described above, a problem arises in evalugtieg- jvisc)
for strongly inhomogeneous plasmas. This is a consequence of the finiteness of the pal
orbits. Consider an annular volume elemanf,. Testions launched near its inner edge have
significantly larger weight (corresponding to higher density) than ions originating from i
outer edge. Consequently, in the initial phase of a bounce period, there can transiently ¢
a finite net current even with closed orbits and no collisions. This transient current dec
away with oscillations on a few bounce time scale, but may severely perturb the solution
theE; dynamics. This can be avoided by initializing the ions in the invariant space that sp:
the different particle orbits. In the presence of collisions, the particles cannot complete
orbits which makes a proper initialization of the orbits computationally extremely difficul
Because avoiding any unphysical radial current is of primary importance for sdtyiran
initialization on collisionless orbits is adopted here. This guarantees that no current ari
at the start from the radial inhomogeneity (and related weight factor variation) even in 1
presence of collisions. On a bounce time scale, with such an initialization the prese
of collisions may, however, lead to some modifications of the originally adapsetd T
profiles, which persist for the rest of the simulation.

In a torus, with closed nested magnetic surfaces the collisionless particle orbits
closed trajectories on a poloidal cross section. An example of such a trajectory is sketc
in Fig. 4b. In an axisymmetric torus, three orbit invariants are sufficient to specify an ort
Such invariants can be, for example, particle total energy, magnetic moment, and par
pitch or poloidal angle at a given special point on the orbit [26]. In a collisionless plasma, 1
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macroparticle
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FIG. 4. (a) Poloidal cross sections of the cells used for macroparticle initialization in the plasma region. T
scheme of binary collision model is depicted in a cell on the bottom. (b) Subparticle initialization on a collisionle
particle orbit.
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ensemble initialization can be made in a phase space formed by such invariants. How
in a torus, this has been found to be nontrivial [26].

A convenient way to provide the ion ensemble with a uniform orbit initialization is t
introducesubpatrticles This method also avoids the problems related to mapping of tf
invariant space. In the subparticle method each original test particle, cafladraparticle
here, is replaced bl subparticles with a weight equal tgll times the macroparticle’s
weight, and the subparticles are distributed on the orbit of the original macroparticle.
the orbit the initial distribution of subparticles is uniform in bounce time; i.e., the time take
by a particle to traverse the orbit segment between two neighboring initial positions of
subparticles is invariant. This is shown schematically in Fig. 4b.

Inthe code, first the macroparticles are identified and their weight is specified as descr
in the beginning of this section for macroparticle initialization. Next, the corresponding «
bit trajectory of each macropatrticle is calculated by solving numerically the equation
the guiding-center motion until the orbit has become fully closed on the poloidal crc
section. Thereafter, the subparticle locations and velocities for initialization on this or
are determined, with the condition that the subparticles follow this orbit during their cc
lisionless guiding-center motion. The actual Monte Carlo calculation is then perform
with the ensemble consisting of the created subparticles and their weights. For collision
calculations, this kind of initialization has been found to reproduce the macroscopic part
distributions obtained by the alternative macroparticle initialization (where no splitting
subparticles is made) at steady state. The required humber of subparticles vs. each
for good cancellation of the transient radial currents of the particles after intialization t
been obtained to be relatively largd;= 50—-100. However, at the same time the numbe
of orbits (i.e., of the original macroparticles) for subparticle initialization can be reduc:
so that the total size of the ensemble can be kept comparable in both macroparticle
subparticle initializations.

Figure 5 shows the time evolution of the radiglprofile for the subparticle initialization
together with a result where no particle splitting was applied. The field was calculated for
FT-2 [14] tokamak plasma under H-mode conditions, where a strong density gradient ex
With the subparticle method, 50 subparticles per orbit were applieEaad) att =0 was
assumed. With subpatrticles, the field develops much more smoothly than with the cony
tional initialization and without oscillations to an equilibrium, where strong oscillations ar
arapid drop down to large negatit#-values at the very start are observed. This is becaus
in FT-2, because of its high poloidal Mach numbgr/B,vr]|, even at modest values of
E, the system evolution is sensitive to both the initial valitj€0) and the start-up phase
of the solution (see Section V). In the subparticle method, the initial radial current ste
negligible ensuring a slow variation & from its initial value. The subparticle method thus
provides aguiescent starfor the simulations and avoids the unphysical variatiofoby
the numerical radial currents imposed by the weight-factor inhomogeneity. With splittir
the orbit loss bringE, down to large negative values at a later stage. This can be seer
Fig. 5a, where the field evolution, in agreement with the orbit loss mechanism, starts r
the separatrix and subsequently moves further inside. The state (still evolving in Fig.
att = 200-300us is almost double inE; |-value compared to the case with conventiona
initialization. Thus, the initialization method adopted is important for the system evolutic
to steady-state. It should, however, be emphasized that the sensitivity to the initializatio
peculiar to configurations where the poloidal Mach number becomes kafgel(ring the
field evolution and/or gradient of the background pressure is strong. For ASDEX Upgrz
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FIG.5. The evolution of the radial electric field (a) with subparticle initialization and (b) without subparticle
initialization in FT-2 tokamakR =0.55 m,a=0.08 m,| =22 kA, B, =2.2 T with parabolic current profile and
profilesn(r) =5 x 10°[1 — (r/a)?]>* m=2 andT (r) =290 x [1 — (r/a)?]*® eV. Four million particles are used
in both simulations with a time step of 1.& for updatingE, .

configurations with standard discharge parameters, for instaBggByvr| is almost

10 times smaller than in FT-2, and no such sensitivity was observed when the ambip
neoclassicak, [4] was used as an initial condition. These results will be further discuss
in Section IV.

It is worth noting that for orbits intersecting the vessel wall or divertor plates/limiter, th
distribution of subparticles is nontrivial. In principle the particles with orbits intersectin
the plasma facing components should not reenter the plasma and, therefore, the subpat
should not be initially distributed on the section of these orbit on which the particles are m
ing inward from the separatrix. However, for collisional plasmas such an initialization m:
overestimate the initial orbit loss current since the particles cannot complete the trajectol
Therefore, to ensure a smooth initialization, a full distribution of subparticles on the orb
inside the plasma is applied even on the orbits intersecting the plasma facing compone

D. Boundary Conditions

As already implied by Fig. 5, the entire plasma cross section is not necessarily nee
to investigate the relevant physics. The radial electric fields related to L-H transition &
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formation of ITBs, in particular, have radial extent of only a few centimeters even in lari
machines like JET and ASDEX Upgrade. Therefore, the computational effort is reduc
enormously by restricting the simulation to a relevant regior< p < pr in minor radius.
Whenever there are no special constraints at the boungearaex g posed by the problem,
and when the mass flow parallel to the magnetic field is given at the boundariean

be evaluated in the region, < p < pr by using the well-known neoclassical analytical
ambipolar valueE,(p) [4] as the boundary condition at= p,. andp = pg. If the outer
boundary lies outside the separatig, > ps, Er (or) =0 is used.

The boundary conditions at. and pgr may affect thek, profile inside the simulation
region through the gyroviscosity. In order to test this effect, the val&e afthe outer bound-
ary was varied in a large range to show that the chosen value does not have significant
on the results. Simulations were done with boundary condiigiis > ps) = +20, 0, and
—40 kV/m for the ASDEX Upgrade edge parameters in the case which will be describec
Section IV.A. Since the viscosity depends on the second derivatizgits effect is to bend
the profile to the boundary value. As the neoclassical gyroviscosity is very weak; the
profile is affected only withimp ~ 0.003, which is less than 2 mm inside the separatrix
However, if the viscosity is anomalous, the effect of the boundary condition extends furtl
inside, making the profile smoother.

As for the particles at the boundaries, wheneseandpr lie inside the the plasma, the
outflowing particles are reflected at these boundaries. This is accomplished by follow
the orbits forp < p. and p > pg in the absence of collisions, gyroviscosity drift, and
polarization drift and by stopping the clock during the time the particles spend in the
regions. This is consistent with the assumption of no source of toroidal momentum ¢
zero radial current fop < o andp > pg.

Theions are initialized withip,. < p < pgr, and those hitting the divertor or wall outside
p > pr are promptly reinitialized ap = pr. The reinitialization is uniform in pitch and
poloidal angle, with the local Maxwellian velocity distribution. This reinitialization doe:
not create any physical current in the simulation domain and, being more uniform (in ph
space) than the loss process, it simulates well the replacement of charge lost througl
separatrix. This method has been successfully applied recently, with the outer boun
at the separatrixpr = ps, to calculate [12] the orbit loss, as well as the related source «
poloidal rotation and its dynamics for L-H transition conditions in ASDEX Upgrade [15]

Whenever the scrape-off-layer plasma outside the sepagatisxsimulated, i.e.pr >
ps, and there are plasma facing components betwegesnd pr, particles hitting these
components are reinitialized still uniformly in pitch and poloidal (and toroidal) angle, b
now the magnetic surface of the reinitialization is the same where the particle hits
component. This ensures that no radial current is generated by the reinitialization,
guasineutrality holds everywhere.

E. The Collision Operator

In the past, most particle simulations using Monte Carlo collision operators have assul
afixed plasmabackground for the test particles to collide off. Although such operators do
conserve momentum nor energy, it has been possible to calculate, for example, diffusior
efficients for collisions between unlike particles (or between minority and majority specie
To study the relaxation of plasma rotation in tori, however, the momentum conservatior
collisions is expected to be important.
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In order to properly treat the momentum equation and momentum generation, a bin
collision model [13] that conserves momentum and energy in pairwise collisions betwe
the ions has been implemented in the ASCOT code. In the poloidal plane the simulat
region is divided into small cells so that the plasma parameters do not vary significar
inside the cells. Particles in each cell are randomly paired, and small angle collisions
performed pairwise. The adopted collision operator conserves the number of partic
the total momentum, and the total energy quasi-locally. This model was recently tes
[21] by calculating poloidal rotation relaxation rates for a homogeneous plasma and
comparing the perpendicular conductivity and parallel viscosity evaluated by ASCOT w
the analytical expressions [27, 28]. The simulations were carried out for a wide range
collisionalities and rotation velocities.

The problem with an energy-conserving collision model for tatatchemes is that
the temperature profile is not sustained by the ensemble without introduction of a pro
energy source/loss for the simulation particles. Therefore, in some cases it is useful tc
the particles collide with a fixed background without conserving energy or momentu
Under such conditions, the collisions themselves automatically provide the source
sink of heat and sustain the given temperature profile of the ensemble. Figure 6 sho\
comparison of steady-state radigl profiles obtained for the plasma periphery in ASDEX
Upgrade using the binary collision model and the collision operator that assumes a fi
plasma background. The steady-state solutions obtained are very similar, indicating
momentum conservation does not play an important role in problems where the poloi
rotation is supported by the orbit loss current. This is because, as a result of the orbit |
the poloidal rotation cannot relax by generating parallel flow intermediated by moment
conservation in collisions [21].

The binary collision model is used as a defaultin ASCOT, but also an option for collisio
with fixed background is included for benchmarking and some special purposes. There i
significant difference in computation speed between the collision models. In the problem
which theE; profile is solved at the plasma edge in the presence of ion orbit loss mechanit
however, the collisions with fixed background are more suitable than the binary collisi
model in longer runs if the aim is to obtain the result for a given temperature profile. Wh
the energy-conserving collision operator is used, the plasma would indeed cool all

-1.0E4 -

-3.0E4 |

= colllslon model with fixed background
'5-0 E4 [ ===="" momentum conserving collislon model

E; (V/m)

0.480 0485 0490 0495 0500
radius (m)

FIG. 6. Comparison of the steady-stafg-profiles between the simulations run with the momentum (and
energy) conserving binary collision operator and with an operator making collisions with a fixed backgrou
ASDEX Upgrade parametei®=1.65 m,a=0.5 m, B;=25 T, | =1 MA with a parabolic current density
profile and linear ramps from=4 x 10* m=3, T =200 eV at the separatrix ta9times larger values at 2 cm
(on the equator) inside from the separatrix.
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time since the lost particles, which are mainly energetic, are replaced by thermal parti
reinitialized atp = pgr. Thus, to maintain the experimental radial temperature, we rath
heat the plasma with the test particle collision operator, which assumes fixed Maxwell
background. Both methods give the same quasi steady-tapeofile if the simulation
time is short compared to the time in which the temperature profile changes significant

The binary collision operation is performed at specific time instants for the whc
particle ensemble together with evaluation of macroscopic particle distributions and
dating of the radial electric field from Eq. (5). The interval (global time step) betwee
these instants is taken a small fraction of the minimum of collision and bounce times
particles in the ensemble, and is typically in the range of 0.1+40With fixed back-
ground collision operation, each particle can be operated separately at specific time
stants during their guiding-center motion. Again, the interval between these instant
taken a small fraction of the minimum of collision and bounce times of this particle
that time. Typically, 25-100 collision operations are performed during each bounce of
particle.

IV. SIMULATION OF NEOCLASSICAL PLASMAS FOR CONDITIONS
WITH TRANSPORT BARRIER

In the following, the present simulation method is applied both to simulate global
the radial electric field in the FT-2 tokamak for L-mode and H-mode conditions and
evaluate locally the sheared neoclasskat B flow at the edge region of ASDEX Up-
grade for L-H transition conditions. As the outer boundary, both simulations use the s
aratrix or the radius at the limiter. In the SOL region, the ions are followed until the
hit the plasma-facing components (limiter, divertor plate, or wall), and after that thi
are regenerated at the outer boundary as explained in the previous section. Becaus
radial current is taken zero, no large rotation is assumed as an initial condition,
no toroidal momentum source is adopted in the present scheme, no significant par
flow generation takes place and, consequently, momentum conservation will not be ai
sue, and collision operators with fixed plasma background will be used in the followi
examples.

A. Edge Plasma Simulation for the L—H Transition in ASDEX Upgrade

The ASDEX Upgrade [15] tokamak has the minor radass 0.5 m, major radius
R=1.65 m, elongation B, plasma current =1 MA, and the toroidal magnetic field
B, = —2.5 T. Corresponding to the discharge 8044 (a deuterium plasma), a separatrix
sity 1.2 x 10" m~2 and temperature 140 eV with abou®limes larger values at 2 cm
inside the separatrix are adopted for reference. The radial electric field is initialized to
neoclassical ambipolar field (assuming zero parallel average mass flow)

Enc=(kseT/e)(N'/n+yT'/T), 8

where the primes denote radial derivative, andjiven in Ref. [4], depends on the colli-
sionality. In minimum 20@00 simulation (sub-)particles are distributed along the sectior
of the ion orbits that lie within the 2-cm wide simulation region. The global time step us
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FIG. 7. The evolution of the radial electric field without subparticle initialization for the ASDEX Upgrade
with parameterf = 1.65 m,a=0.5m, B, =2.1 T, | =1 MA with a parabolic current density profile and linear
ramps fromn=1.2 x 10 m=3, T =120 eV at the separatrix tad times larger values at 2 cm (on the equator)
inside from the separatrix..3 million simulation particles using a time step ab2:s and the radial grid size
0.3125 mm (on the equator) for updatirigy. Neoclassical ambipoldE, value withy = 1.5 is used at the left
boundary and at the initialization &; .

for advancing the electric field is 1.25. For most of the orbits, more than four integration
steps are used to advance the particle orbits within each step. Figure 7 shows the evol
of the E; profile in the region M6 < p < 1 (obr =1) and indicates, in a millisecond time
scale (i.e., within a few collisional times and a few bounce times), the formation of a strot
sheared inward field near the separatrix. The numerical valug fon the outboard equator
can be obtained usirdp/dr =2 mL. Deeper inside the plasma, the field remains close t
its initial, analytical ambipolar value. The inaccuracy in determininigr givenn and T
profiles from the expressions in Ref. [4] explains the overshod, cdit the beginning of
the simulation and the related temporal oscillation of Bheprofile that is damped during
the simulation. The field enhancement near the separatrix has recently been interpr
[12, 29] to arise from the ion orbit loss and the radial current related to it: a larger inwa
E; (in comparison to the neoclassical ambipolar value) is required to drive diffusive curre
inward to balance the orbit loss current as sketched in Fig. 1. It is of interest to note t
the calculation remains stable and a steady-state is achieved at an instantaneous noise
of 5-10 % for the present simulation with23x 10° simulation particles. For steady-state
conditions, it has been possible to further reduce this noise by simple time-averaging of
resultingE; profiles from sufficiently long runs.

Figure 8 shows steady-stakg profiles for various separatriX-values obtained by a
scalar multiplication from the reference profile. The analytical ambipolar prdilgs)
are shown for comparison. The analytical values are based on a number of assump
made in deriving the expression from the drift-kinetic equation [4]. The present simulati
is carried out for fairly steep plasma gradients, with particle orbit widthsomparable
to the gradient scale lengthy, while the theory in Ref. [4] is based on the assumptior
w <K Lg. At the lowest temperature, the enhancemert,ois weak, as expected from the
orbit loss model, and the field remains close to the analytical value. For increasing e
temperature and edge temperature gradient, the simulated field becomes strongly sh
and, indeed, th& x B shear becomes sufficient for turbulence suppression [12] at L—
transition conditionsT (por) = 120 eV) of ASDEX Upgrade.
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FIG. 8. Steady-state radial electric field profiles at various separatrix temperatures for the ASDEX Upgr:
with the separatrix density.2 x 10" m~ and 19 times larger temperature and density values at 2 cm (on th
equator) inside from the separatrix. The neoclassical ambipolar values from Eq. (8) are shown for compari
200,000 simulation particles were used.

B. Neoclassical Electric Field in FT-2 Tokamak

On FT-2 tokamak R=0.55 m,a=0.08 m, | =22 kA, B;=2.2 T), a spontaneous
transition to improved confinement mode has been observed in the presence of lower hy
heating [14]. The barrier is believed to form as a result of a strongly sheared electric fi
E;. The small plasma current leads to trapped orbits with very large banana widths, on
order of the minor radius. Also, the toroidal ripple is large, and the ripple-loss region extet
deep into the bulk plasma. Both of these features can lead to significant direct orbit los
and therefore it is suggested that purely neoclassical effects might explain the formatio
a radial electric field with significant enough shear to suppress turbulence.

We have simulated the generation of the radial electric field in FT-2 geometry. T
simulations cover the entire plasma up to the limiter radiyssaeind they are carried out
for two different plasma conditions: for poor confinement characteristics (dubisaldg
and for improved confinement characteristics (dubbeahodg. The corresponding plasma
profiles are shown in Fig. 9. As in the ASDEX Upgrade study, the collision model with fixe
electron and ion backgrounds is used. The ions are followed in the scrape-off-layer (S
until they either intersect the wall or the limiter or return to the main plasma. The limiter
simply defined as a region in the SOL limited by two poloidal angtgSew < 6 < 6L hign
with 6 jow = —68 andeL,high = 22°.

Figure 10 gives the smoothed-oHt profiles from a 06-ms-long simulation (with a
0.75us global time step) that used 800,000 test particles (hydrogen) for both L- a
H-mode cases. The simulation time was sufficient for obtaining a steady state (comy
Fig. 5). The noise in these simulations was somewhat larger than in the ASDEX Upgr
edge plasma simulation for reasons discussed below. The neoclassical anthipotHies
from Eq. (8) are shown for comparison. For the L-mode, the field remains close to the
dicted ambipolar value in most of the simulation region. At outer regions, close to the limi
radius, amodest enhancementinthe field is observed. On the other hand, for the H-mode
a strongly sheared field structure with a significant deviation from the ambipolar value:
obtained.

It is important to note that for the L-mode, the Mach number of the poloidal rotatic
|E; /Bpuii| is close to one, and for the H-mode case it is well in the supersonic regic
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FIG. 9. (a) Temperature and (b) density profiles used for the FT-2 simulations in L-mode and H-mo
conditions of the experiments.

Consequently, in the H-mode, tlex B rotation in the poloidal direction is so strong
that it completely dominates the poloidal motion arising from the thermal parallel motio
Thus, the orbit widths become strongly squeezed. This, together with the steep gradi
(in comparison to the orbit widths in the absenceEpf, indicates that the standard neo-
classical theory is not valid. Because the orbit widths are strongly squeezed, the enha
ment in E, for the H-mode case here doest have its origin in the orbit loss (although
the effect of orbit losses can be seen near the limiter), but is a direct consequenc
the neoclassical ambipolar balance, the description of which requires a much more ¢
plete analytical treatment than hitherto presented in the literature. It should be mentio
that the order of magnitude d& and its gradient were obtained independent both o
the initial conditions E; =0 or E; = E;) on a bounce time scale and of the initialization
scheme.

The E; structures obtained for FT-2 were found to be prone to a slow numerical ins
bility which was indicated by a steady growth of the field values in opposite direction
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FIG.10. Smoothed time-averaged profiles of the steady-state radial electric field for the FT-2 L- and H-mc
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FIG. 11. The snapshot of the radial electric field profileé at 500 s for an FT-2 simulation for the H-mode
profiles using no gyroviscosity enhancement. The unstable spikes appear roughly with a period of the spatia

size used for evaluation d; .
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positive and negative, on the consequtive grid popssand pm.1, respectively. This is
demonstrated in Fig. 11, which shows tBestructure for the H-mode case after.&-ns
simulation. This uncontrolled (but at later times saturating) grid instability was not four
to be suppressed by a diminishing time stemor by the increase of ensemble size. An
iterative second-order time integration of Eq. (5) was not helpful either. It was observed t
increasing the perpendicular viscosity coefficigstgnificantly weakens the growth of this
instability. The results in Fig. 10 were obtained with a viscosity 50 times the Braginskii vi
cosity. The appearance of the grid instability in the present FT-2 case is probably conne
to the high poloidal Mach number of the rotation at modgstamplitude (in contrast to
ASDEX Upgrade where no instability was observed and where the Mach number st
below unity), but its mechanism has not been thoroughly explained. The most efficient v
to avoid this instability was to evaluate the fluence in Eq. (7) by averaging its value o\
the three neighboring grid cells— 1, £, and¢ + 1 around in advancing tcE; 4 i+1. This
prevents the positive feedback between the electric field energy and the observed uns
collective motion of the ions toward the grid knot points: at such a grid point, in the abser
of the averaging, the electric potential grows, the kinetic energy of these ions decreases
because of the high poloidal Mach number, the ions become highly localized and attache
that radius.

V. CONCLUSIONS

Using the neoclassical radial current balance (quasineutrality condition) with the pol
ization currentin a Monte Carlo particle following code, it is demonstrated that neoclassi
rotation dynamics and the radial electric field can be resolved in a torus without resorting
a full solution of the Poisson or Maxwell equations. Filtering the turbulent fields in this we
out reduces the computational effort significantly and makes the neoclassical phenon
more transparent. However, the present reduced model has indicated a number of impa
elements which must be shared also by the full model, for example, the gyrokinetic si
ulation, if one wishes the proper neoclassical behavior to be simulated. There are spe
requirements for the time step, grid size, ensemble size, particle initialization, and reinit
ization, as well as for boundary conditions, which must be satisfied for proper descript
of particle and heat flux in the presence of steep gradients, finite orbit widths, and ol
losses.

It was shown that the solving of the polarization equation (5)Hocan be kept stable,
even with the first-order explicit integration scheme, provided the poloidal Mach numk
|E: /Bpvr| remains well below unity. With typical tokamak parameters relevant for fusio
studies, the integration accuracy is acceptable for several millisecond integration runs
ing some tens of time steps per orbit bounce and collision time and ensembles contail
about thousand particles per radial grid cell applied for resolEngrofile. The method
remained stable and accurate with the presence of orbit losses, and the first self-consi
neoclassical radial electric field profiles were produced for conditions relevant for trai
port barrier formation with larg&, shears. However, the polarization equation become
numerically unstable if the Mach number becomes of the order of unity or larger. Tt
instability has been found to arise from the ion collective attraction to grid points where t
electric potential grows, and where the ions lose their kinetic energy, the latter being tra
formed to the electric potential energy thus reinforcing the potential growth, and beco
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frozen at this radial location by increased orbit squeezing as a result of the incrEased
It was not possible to stabilize this instability by decreasing time step, increasing enst
ble, by changing the grid size, or by using implicite integration schemes. The increase
gyroviscosity restrains the instability, but the most efficient way to suppress it has beer
averaging the flux in Eq. (5) over the three neighboring radial grid cells in advabgiitg
Eq. (5).

With large orbit widths, steep gradients, and a large poloidal Mach number, the soluti
have been found to become sensitive to the initialization. Although the proper initializati
is not possible without knowing the very solution, orbit initialization, i.e., distributing th
ensemble particles uniformly on the particle collisionless orbits, has been found useful
the solving of the polarization equation. It is important to note that this problem is an iss
for any solving method of the particle distribution function, and should be taken into accol
in toroidal plasma simulations, whether containing turbulence physics or not. With the ol
initialization, one can avoid the unphysical radial flux arising in the starting phase of t
particle bounce motion in an inhomogeneous plasma. This then prevents any uncontre
change ofg, at this stage.

It should be noted that in the radial current balance, one can also include external curi
e.g., currents running in a probe shaft extending into the plasma region. In such a case
current running in the plasma compensates the current in the shaft. The nonzero cu
in the plasma creates a toroidak B force which drives momentum and rotation in that
direction. Here, the momentum conservation in collisions is important. The latter can
taken into account in the present method with a binary collision technique, as was descr
in the text. Using the present code, the biased probe excitation df-thetransition in
the TEXTOR tokamak was successfully modeled [12]. Here, in good agreement with
theory, production of propagating soliton-lilg structures was observed for the first time
in simulations.

Examples shown in Section IV demonstrate the power of the present simulation mett
Both in small- and medium-sized tokamaks, the neoclassical radial electric field has b
solved under conditions close to the transport barrier formation. The observation of Ia
shears irE, even without bifurcative transition indicates that the neoclassical mechanis
can play an important role in the creation of transport barriers. Various nonambipolar flu:
such as ripple loss, orbit loss, rf-induced fast ion flux, MHD mode generated flux, fl
resulting from stochastic magnetic field lines, flux arising from charge exchange collisio
and probe excited flux can be included straightforwardly and investigated. Moreover,
neoclassical equilibria can be obtained with arbitrary initial conditions. It is not difficu
to extend the present method to include the electron dynamics by solving the elect
and ion orbits together and evaluating their total current for Eq. (5). However, as h
the particle radial distribution evolves, special care must be exercised in reinitialization
the particles and in providing a heat source. Such a problem was already considered i
context of biased probe excitation Bf [12], where reinitialization at both boundaries of
the simulation region was mandatory.
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